Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Shanghai Institute of Laser Plasmas, Shanghai 201800, China
To study how laser pulse wavelength will affect the damage characteristics of optical elements with different degrees of contamination, we compare the extent of damage on optical glass between nanosecond pulsed laser of 1064 and 355 nm wavelength, respectively, and reach the following conclusions: the surface quality of clean optical elements determines its own anti-laser damage capability; the damage probability of optical sample caused by ultraviolet radiation-induced organic contamination is much higher than the infrared radiation-induced one; and contaminated metal particles can lower damage threshold of optical elements by 2–3 times.
140.3390 Laser materials processing 140.3440 Laser-induced breakdown 140.6810 Thermal effects 160.3380 Laser materials 160.6030 Silica 
Chinese Optics Letters
2014, 12(s2): S21409
作者单位
摘要
中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
采用一台输出波长为1064 nm的NdYAG调Q激光器,以不同辐照方式对光学元件表面污染物引起的损伤开展了系统的实验研究。在确定了K9 玻璃和熔石英元件基板零几率损伤阈值的基础上,针对金属粒子污染物和有机污染物分别进行了元件损伤特性实验研究,分析了表面污染物造成元件损伤阈值下降的诱导机理。
激光光学 激光损伤 金属粒子污染 有机污染 损伤阈值 
中国激光
2014, 41(s1): s102006
Author Affiliations
Abstract
中国科学院上海光学精密机械研究所, 上海 201800
The system for effective area measurement of laser spot on target plane was designed based on the definition of effective area. A 12-bit CCD camera is used for the effecive area measurement. A bmp image of the beam profile is stored. This image is processing by software to evaluate the ratio of total energy and peak fluence (effective area). Some test results were given using effective area measurement system. The system was employed in the laser induced damage threshold test and it is helpful to improving the precision of laser induced damage threshold test.
光斑有效面积 激光损伤阈值 准确测量 峰值能量密度 Spot effective area Laser induced damage threshold 
Collection Of theses on high power laser and plasma physics
2004, 2(1): 83
作者单位
摘要
中国科学院上海光学精密机械研究所, 上海 201800
从激光光斑有效面积的定义出发,采用CCD图像摄取技术,设计了一套激光光斑有效面积测量装置.在4种不同激光光斑能量分布和不同能量密度的情况下,用有效面积测量仪分别进行了实际测试验证.结果表明,该测量装置可以对任何能量非均匀分布的激光光斑的有效面积进行准确测试,有助于提高光学元件激光损伤阈值的测量精度.
光斑有效面积 激光损伤阈值 准确测量 峰值能量密度 Spot effective area Laser induced damage threshold 
强激光与粒子束
2004, 16(10): 83
Author Affiliations
Abstract
1 高功率激光物理国家实验室,中国科学院上海光学精密机械研究所,上海,201800
2 高功率激光物理国家实验室,上海激光等离子体研究所,上海,201800
3 中国工程物理研究院激光聚变研究中心,四川,绵阳,621900
4 上海激光等离子体研究所,上海,201800
Nd∶doped-glass-based sub-picosecond laser system with the maximum peak power of greater than 20 tara watts and the energy on target surface of 16 J is accomplished by using the chirped laser pulse amplification technology. While the laser pulse is focused by an off-axis parabolic mirror, the power density on target surface of approximately 2×10 18 W/cm 2 is acquired. In the performed neutron experiment, a C 8D 8 plate target is placed on the focal spot of the off-axis parabolic mirror. The maximum neutron yield for a single shot reaches 2.4×10 4. Still some other related problems are discussed
惯性约束聚变技术 亚皮秒超短脉冲激光 钕玻璃放大器 中子产额 ICF sub-picosecond ultra short laser pulse Nd∶doped glass based amplifier neutron yield 
Collection Of theses on high power laser and plasma physics
2003, 1(1): 17
Author Affiliations
Abstract
National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.
140.3280 laser amplifiers 190.4970 parametric oscillators and amplifiers 
Collection Of theses on high power laser and plasma physics
2003, 1(1): 14
作者单位
摘要
1 高功率激光物理国家实验室,中国科学院上海光学精密机械研究所,上海,201800
2 高功率激光物理国家实验室,上海激光等离子体研究所,上海,201800
3 中国工程物理研究院激光聚变研究中心,四川,绵阳,621900
4 上海激光等离子体研究所,上海,201800
利用啁啾脉冲放大技术,建成了一台基于钕玻璃放大器1053 nm波长的亚皮秒超短脉冲激光系统(SPS)。系统的输出峰值功率大于20 TW,靶面最高能量可达16 J,采用离轴抛物面反射镜聚焦,在靶面上获得2×10 18 W/cm 2的激光功率密度,以此激光脉冲轰击氘化聚苯乙烯平面靶,获得单次发射最高2.4×10 4个中子产额。对中子产生的机理进行了相关的讨论。
惯性约束聚变技术 亚皮秒超短脉冲激光 钕玻璃放大器 中子产额 
中国激光
2003, 30(10): 17
Author Affiliations
Abstract
National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.
140.3280 laser amplifiers 190.4970 parametric oscillators and amplifiers 
Chinese Optics Letters
2003, 1(11): 14
作者单位
摘要
High power laser and Physics Joint Laboratory, Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai 201800
toroidal mirror X-ray laser gain 
Chinese Journal of Lasers B
1992, 1(2): 149
作者单位
摘要
中国科学院上海光机所
用266.0nm紫外激光探针测量了柱状铜靶(Φ500μm和Φ140μm)等离子体电子密度的空间分布,发现了径向密度凹陷和凸起结构,观察到了轴向和偏轴向密度轮廓陡变随时间的发展过程,并用简单的理论模型进行了半定量分析,结果与实验基本一致。
激光探针 等离子体密度 
中国激光
1989, 16(6): 334

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!